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Abstract—Programmable switches have been proposed in to-
day’s network to enable flexible reconfiguration of devices and
reduce time-to-deployment. Buffer sizing, an important factor
for network performance, however, has not received enough
attention in programmable network. The state-of-the-art buffer
sizing solutions usually employ either fixed buffer size or adjust
the buffer size heuristically. Without programmability, they
suffer from either massive packet drops or large queueing delay
in dynamic environment. In this paper, we propose Adaptive
Buffer Sizing (ABS), a low-cost and deploy-friendly framework
compatible with programmable network. By decoupling the data
plane and control plane, ABS-capable switches only need to react
to the actions from controller, optimizing network performance
in run-time under dynamic traffic. Meanwhile, actions can be
programmed by particular Machine Learning (ML) models in the
controller to meet different network requirements. In this paper,
we address two specific ML models for different scenarios, a rein-
forcement learning model for relatively stable network with user
specific quality requirements, and a supervised learning model
for highly dynamic network condition. We implement the ABS
framework by integrating the prevalent network simulator NS-2
with ML module. The experiment shows that ABS outperforms
state-of-the-art buffer sizing solutions by up to 38.23x under
various network environments.

Index Terms—adaptive buffer sizing, reinforcement learning,
supervised learning, standing queue, quality of experience, NS-2

I. INTRODUCTION

Programmable switches have been proposed in today’s
network to enable flexible reconfiguration of devices and
reduce time-to-deployment [1]–[3]. Programmability has been
introduced in packet header parsing, match-action tables [1]
and packet scheduling [2], [3], which simplifies network
management and promotes innovation to enhance application
experience. Buffer size, an important factor for network per-
formance, however, has been configured as a fixed value, in
today’s programmable switches. Buffer plays an important
role in network devices (e.g., routers or switches). During
congestion or bursty traffic, it is used to temporarily store
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packets that cannot be instantly forwarded by the device. The
switch buffer size significantly affects network performance.
For example, large buffers can improve link utilization by
reducing the chance of packet drops, while at the same time
may introduce the buffer bloat problem [4], where packets
suffer from the significant queueing delays. On the contrary,
small buffers may cause massive packet loss and retrans-
mission, even during light congestion or bursts, eventually
reducing network throughput. Setting buffers with proper size
can effectively alleviate network congestion while still making
full use of link bandwidth. Therefore, choosing a proper value
for buffer size is essential for the network performance.

Some works are proposed to improve network performance
by carefully selecting a fixed buffer size for specific network
scenarios or under certain conditions [5], [6]. Over recent
years, however, new network scenarios (e.g., data center net-
works, WiFi and cellular networks) emerge. In these network
scenarios, the bottleneck link capacity is changing, and flows
may have different Round Trip Times (RTTs) and different
user specific requirements (i.e., Quality of Experience, QoE),
all of which make fixed buffer sizing challenging. Thus,
a promising solution is to adaptively adjust buffer size for
different network scenarios and it has been recently attracted
attentions from industry (e.g., Netflix [7], Facebook [8]) and
academia [9]. However, these works lack programmability
and only heuristically change the buffer size following a
fixed logic. For instances, they would still run mistakenly
according to the network states in the past rather than possible
future network changes, when the traffic pattern alters. As
consequences, the state-of-the-art solutions would hardly meet
various network performance requirement in varying environ-
ments with different congestion control schemes.

In this paper, we propose an Adaptive Buffer Sizing (ABS)
framework for programmable switches to dynamically con-
figure or customize the buffer size behavior of a switch. By
decoupling the data plane and control plane, ABS framework
features high programmability of buffer sizing behaviors.
Specifically, ABS-capable switches are able to meet various



network requirements under different dynamic environments
(e.g., links with different latency and capacity, different con-
gestion control schemes coexisting) by simply reacting to
the the actions from the remote control plane. Moreover, the
remote control plane can leverage different Machine Learning
(ML) models to perform more complex buffer sizing actions
based on the prediction of possible network changes accord-
ing to the periodically collected in-network features from
switches, outperforming other state-of-the-art solutions in both
programmability and performances. Additionally, the ABS
framework is feasible and can be easily implemented with
low cost in today’s programmability-enabled network with the
assistance of high-performance programmable switches and
the architecture of Software-Defined Networking (SDN).

The contributions of the work are summarized as follows:
• To the best of our knowledge, this is the first paper that

works on the programmability of buffer sizing and intro-
duces ML into buffer sizing issues. The proposed ABS
framework defines the interface and actions between the
data plane and control plane, enabling buffer size tuning
based on real-time network states and their predictions.

• To verify the programmability of ABS under different
network environments, two specific ML models (i.e.,
ABSRL and ABSSL) are addressed as typical use cases.
According to our observations, analysis, and experiments,
ABSRL is suitable for relatively stable network with
specific user requirements (e.g., data center networks),
while the ABSSL works quite well when the network is
highly dynamic and noisy (e.g., wireless networks).

• We reconstruct the prevalent NS-2 simulator platform
by integrating it with the ML models to evaluate the
performance of ABS. The compatibility and synchroniza-
tion problem between event-driven mechanism of NS-
2 and message passing with the ML-based controller is
resolved. Therefore, our platform can also be used for
other ML-related NS-2 simulation besides buffer sizing1.

• ABS and its programmability are thoroughly evaluated
via massive experiments under various ML models, user
specific requirements, network environments, and conges-
tion control schemes. The results show that ABS can re-
markably boost the network performance by up to 38.23x,
compared with cutting-edge buffer sizing schemes.

The paper is organized as follows. Section II lists some
related work. In Section III, we introduce the ABS framework
and two ML models. Section IV is the experiment setting and
evaluations of ABS. Finally Section V concludes the paper.

II. RELATED WORK

A. Buffer Sizing

Buffer sizing is a classic topic for network research, and
many existing papers study how to select a fixed buffer size
for good network performance [4]–[6], [10], [11]. However,
as various new networks and applications come into sight,
the previous fixed buffer size does not always work well [7],

1The code is available at https://github.com/jiaxintang/abs/tree/master.

[12]. Westphal et al. [13] consider the wide-area network and
propose to trim packets to reduce buffer sizes and improve
RTTs. Facebook changes the buffer sizes of their data center
and backbone routers. Their results show the buffer change
could lead to tolerable degradation of packet drop rates and
significant enhancements in latency [8]. CoDel [14] drops
packets based on the minimum queueing delay which avoids
the challenge of buffer sizing. Cocoa [9] automatically changes
the buffer size by detecting the minimum queue length in the
past. It has a similar goal as ABSSL but employs a heuristic
algorithm with no prediction of network changes as ABS
does. So the performance will degrade in dynamic and noisy
network environments with multiple flows. Random Early
Detection (RED) [15], an active queue management (AQM)
algorithm, uses four parameters to control the drop behavior
in the buffer. However, the parameters of RED are fixed and
need to be manually decided and configured.

B. ML in Networks
ML has been widely used to improve network perfor-

mance [16]–[34]. For instances, Reinforcement learning (RL)
is used to optimize the performance of Traffic Engineering
(TE) [16]–[20]. Sun et al. [21] use RL to accelerate the
transmission of coflows. Jiang et al. [23] propose a similar
architecture named data-driven network. Ref. [24], [25] lever-
age RL model for routing traffic. Ref. [26]–[28] use RL to
adjust TCP congestion windows (CWnd) adaptively. Wang et
al. [29] deploy an RL-based initial video segment selector
on edge CDN server for optimal QoE. Heuristic algorithms
can hardly solve the challenges in these related work due
to complicate state and solution space. RL is effective by
optimizing a definite reward function. However, RL models
are hard to be trained online and converge in highly dynamic
environment. Xie et al. [31] design a supervised learning (SL)
algorithm for partial RL model online update. Valadarsky et
al. [32] attempt to leverage SL to generate better routing
configuration. Berger [33] models optimal caching decisions
and uses GBDT to optimize CDN caching. Yan et al. [34]
develop ABR algorithm which combines classic control with
an SL predictor for video streaming.

C. Network Programmablility
Traditional network devices (e.g., switches and routers)

usually have proprietary data plane implementation that cannot
be modified by users. This greatly hinders the innovation
of network industry. In the past decade, much effort has
been put to enable programmability and softwarization in
network devices, such as OpenFlow [35], [36], P4 [1], pro-
grammable scheduler [2], and Network Function Virtualiza-
tion (NFV) [37]. These new techniques greatly improve the
programmbility of network devices and make it possible to
use ML to control and manage today’s network devices for
automated management and better performance.

III. ADAPTIVE BUFFER SIZING

In this section, we first introduce the framework of ABS in
Section III-A, then we describe two specific ML models using



Fig. 1: The framework of ABS.

the ABS framework, ABSRL and ABSSL, in Section III-B and
III-C, respectively. Finally, we discuss the feasibility of ABS
in Section III-D.

A. Overview of ABS Framework

Our work focuses on programmability of the buffer size
for each switch with the assistance of pluggable ML module.
Fig. 1 shows the design of ABS framework, which consists
of a pluggable ML module in the control plane and network
configuration operations in the data plane.

In the control plane, the ML agent firstly choose and load a
suitable ML model according to the network environment and
user requirements. Then, the ML agent leverages the neural
network model to generate action at, which is the current
recommended buffer size adaptive to the varying network
environment, and the latest at is sent back to the data plane
periodically. Specific ML models used in ABS and their details
are addressed in the Section III-B and III-C.

The data plane has two agents: measurement agent and
action agent. The measurement agent is responsible for contin-
uously collecting the network state at the switch and sending
the state st to the ML agent in a given time interval. Specifi-
cally, the agent tracks several available variables (for specific
states features, please refer to Section III-D) in a switch. The
state features st are the average values from the last data
transmission to the control plane. The action agent sets buffer
size according to the latest received action at. The interface
between the data plane and control plane includes action at,
state st and time interval between the two transmissions of
state. The time interval is managed by the control plane.

In conclusion, at each time step t, the ML agent receives an
observation st from the measurement agent; it then uses the
given ML model to calculate the best buffer size at based on
the previous observations st, st−1..., st−w+1 where w denotes
the observation window size. at is then sent to the action
agent and the time interval between Timet and Timet+1 is
sent to measurement agent. Therefore, with the latest actions
from the control plane, the ABS-capable switches are able to
perform programmed buffer sizing logic, optimizing network
performance under dynamic traffic.

B. Adaptive Buffer Sizing with RL

We design an RL model to serve as the ML agent in ABS
framework, namely ABSRL, to meet different user specific
requirements (i.e., QoE) in different network scenarios. Some
scenarios may need extremely low delay, while the others pay
more attention to throughput. Different QoE functions can
serve as the rewards of the RL model. ABSRL can improve the
performance of buffer sizing in a targeted manner. Note that,
we do not focus on the design of network QoE functions in
this paper and we use a representative one based on throughput
and delay to serve as the reward and measure the performance
of our model.

1) Design of RL Model: We utilize the Actor Advantage
Critic (A2C) model [38] as the RL model for buffer size cal-
culation and Proximal Policy Optimization (PPO) method [39]
for model optimization.

A2C: A2C model takes advantage from both value-based
and policy-based methods. Value-based methods are sample-
efficient and steady, while policy-based methods can converge
fast for continuous environments. In A2C, the maximum future
reward Q(s, a) is divided into the state value function V (s)
and the advantage function A(s, a). V (s) is the base reward
of a given state no matter what action is taken. A(s, a)
represents the extra reward of an action compared with other
actions. Then the policy is designed to maximize A, which
can effectively reduce variance and increase stability. The A2C
model consists of an actor and a critic. The actor learns the
policy to take an action based on a given state which can
maximize the estimate accumulated advantage function Â.

Ât = δt + (γ)δt+1 + ...+ γT−t+1δT−1 (1)
where

δt = rt + γV (st+1)− V (st) (2)

where Ât is the estimate advantage function at time t. The
critic tries to make an estimate of the state value function
V (s). The two modules interact with each other to help find
the best actions, i.e. the buffer size. We use a neural network
to work as the actor and critic.

PPO: For training the model, we leverage PPO which deals
with A2C in an off-policy manner. Compared with simple
policy gradient (PG), PPO is more sample efficient and easy to
converge. The objective function to be maximized combines
the value function error criticLoss, which is the loss of the
critic, and policy surrogate actorGain which is the calculated
advantage of the actor. Additionally, an entropy bonus is
introduced to make the policy distribution more uniform and
ensure sufficient exploration.

L(θ) = actorGain(θ)− criticLoss(θ) + entropy (3)
criticLoss(θ) = (Vθ(st)− (rt + Vθ(st+1)))2 (4)

entropy = H(πθ(at|st)) (5)

actorGain(θ) = Et[min(prt(θ)Ât), clip(prt(θ), 1−ε, 1+ε)Ât)]
(6)

where prt(θ) denotes the probability ratio πθ(at|st)
πθold (at|st)

and θold
is the parameters of policy before the update. clip means



clipping the value prt into the interval [1− ε, 1 + ε] to avoid
the model stepping so far and the performance collapsing.

2) RL formulation: State space: The state describes the
network state from the last report. State st of time t is
(qDelayt, inPacketst, throughputt, pDelayt, capacityt),
where qDelay denotes the average queueing delay, inPackets
is the average size of enqueued packets, pDelay is the average
propagation delay of flows, and capacity is the bottleneck link
capacity. Note that we split the RTT into queueing delay and
propagation delay. Queueing delay is dominated by the queue
behavior in the switch while the propagation delay in turn
can affect the queue behavior. Since the network environment
keeps changing and our recommended buffer size should be
adaptive to the network environment after it is configured,
we use Long Short-Term Memory (LSTM) [40] to obtain the
latent future network state fStatet based on the state sequence
sqt over a past observation window with size w.

Action space: The action space is the recommended buffer
sizes according to the observations. The action at of time t is
the buffer size measured by the number of packets.

Reward function: The reward is a score of network per-
formance. Larger reward represents better performance of the
network configuration. Since network requirements of different
scenarios may be different, different QoE functions can serve
as the reward function. We only use a representative one
here to quantitatively measure the joint impact of throughput
and queueing delay. The QoE to evaluate action at can be
calculated based on the next state st+1. In detail, the QoE is
the product of QoEthroughput and QoEdelay.

QoE(Reward) = QoEαthroughput ∗QoE
β
delay (7)

where α and β are the importance weights to trade off between
the throughput and the queueing delay. QoEthroughput is
calculated based on the utilization of the link capacity:

QoEthroughput = throughput/linkCapacity (8)
QoEdelay follows the results of [41], where QoEdelay de-
creases along a sigmoid-like curve as the delay increased
as shown in Fig. 2 which can be divided into three ranges.
When the delay is very small, increasing the delay slightly
degrades QoEdelay. However, if the delay is larger than a
certain threshold, QoEdelay will drop rapidly even if the delay
increases a little [41]. And when QoEdelay is very small, larger
delay is hard to make the experience worse. QoEdelay used
in our paper is given in Eq. 9.

QoEdelay =


a1 ∗ x+ b1 if x ≤ t1
a2 ∗ x+ b2 if t1 < x ≤ t2
a3 ∗ e−b3∗x + c3 if x > t2

(9)

where x denotes the average queueing delay in seconds. The
specific parameters are designed based on environment. The
throughput and queueing delay will increase simultaneously
when the buffer size increases; consequently, QoEthroughput
will be larger, and QoEdelay will be smaller. The RL model
needs to maximize the QoE to make a trade-off between them.

3) Algorithm: Algorithm 1 summarizes the algorithm for
ABSRL in the training phase. The algorithm for each epoch
can be divided into two parts. The first part (Line 2 - Line
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Fig. 2: An example of QoEdelay curve.

12) is to calculate the best buffer size and interact with
the measurement and action agent. Each time a state st is
received from the measurement agent, the agent will compute
the reward rewardt−1 of the last action and push the tuple
into RolloutStorage for the off-policy model update. Then it
calculates the current action at based on the state sequence
sqt. To synchronize the time in the data plane and control
plane, another output is the time interval from time t to the
next observation transmission time t + 1. at and the time
interval between t and t + 1 are sent to the data plane. The
measurement and action agent will pause at the sync time.
When the measurement agent sends the observation to the RL
agent, the action agent will pause until it receives a command
containing the recommended buffer size. The second part
(Line 13 - Line 20) is to update the model. Since we utilize
PPO for policy optimization, we update for several times based
on the sampled data from RolloutStorage. Additionally, for the
inference phase, the parameter θ is well trained. Only Line 8
- Line 9 need to be used for buffer size inference.

Algorithm 1 The training algorithm for ABSRL
Input: Observation st of switch
Output: Recommended Buffer size at, time interval between
t and t+ 1

1: while Epoch ≤ EPOCHNUM do
2: while currenttime ≤ SIMULATIONTIME do
3: Fetch observation state st
4: Push st extracted from the observation into sqt
5: if sqt.length() ≥ WINDOWSIZE then
6: rewardt−1 ← QoE(qDelay, throughput)
7: Push (st−1, at−1, vt−1, rewardt−1) into the Roll-

outStorage
8: fStatet ← LSTM(sqt)
9: at, vt ← Actorθ(fStatet), Criticθ(fStatet)

10: end if
11: Pass message with at and time interval
12: end while
13: for (st, at, vt, rewardt) in RolloutStorage do
14: rt ← rewardt + γ ∗ vt+1

15: end for
16: while ∃ Data in RolloutStorage not be used for opti-

mizing do
17: fetch a batch from RolloutStorage
18: ∆Lθ ← actorGainθ − criticLossθ + entropy
19: Update parameter θ of the model:

θ ← θ + α∆Lθ

20: end while
21: end while
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Fig. 3: The queue length in buffer with different buffer size
((a) small buffer; (b) large buffer; (c) optimal buffer).

C. Adaptive Buffer Sizing with SL

Since the drastic change of link capacity of the network may
introduce noise into the rewards, RL can hardly converge. We
also introduce SL into buffer sizing in the noisy environment
and propose ABSSL.

1) Optimization Goal: Inspired by CoDel [14], we clarify
a general optimization goal for a good buffer management,
that is to minimize the standing queue and spare ratio of
the bottleneck link simultaneously. The standing queue is the
queue always existing in the buffer which is caused by the
mismatch between the sending window of senders and the
buffer size. Taking TCP Reno as example, the CWnd of the
sender continuously grows until a packet is dropped, which
represents the fullness of buffer. Then, CWnd cuts down and
the sending rate slows down abruptly, which results in the
decrease of the number of packets in the buffer. As the sending
rate grows up, the queue in the buffer becomes longer again.
The cyclic process is shown in Fig. 3. If the buffer size is too
small (as Fig. 3(a)), the buffer will be empty and the bottleneck
link will be underutilized when the sending rate decreases.
However, if the buffer is too large (as Fig. 3(b)), there will
always exist a queue in the buffer, resulting in excess delay. If
standing queue and spare ratio of the bottleneck link are both
0 as shown in Fig. 3(c), the system will achieve the minimum
queueing delay while keeping the maximum link utilization.

2) Design of SL Model: Based on the above optimization
goal, we design an SL model, i.e., ABSSL, which utilizes
LSTM to predict the standing queue in the next time interval
which is the size of buffer to be changed. The features are
the same as the state space of ABSRL. The predicted queue
length can be a positive value which means that our current
buffer needs to shrink. On the other hand, the predicted result
can also be a negative value which means that the current
buffer size is too small to fully utilize the bandwidth in the
next interval, so the buffer size need to be increased. Here we
limit the largest value of change because drastic and frequent
fluctuation of buffer size may cause large number of packet
drop and then greatly damage the performance. We measure
the length of standing queue rather than the queueing delay
used in CoDel, because the ground truth is easier to acquire

in the next interval based on the measured state features. For
example, if the output of the model at time t is ŷt, which
means that the predicted standing queue at time t + 1 is ŷt.
Then, in order to keep both the standing queue and spare ratio
as 0 at time t+ 1, the buffer size decreases by |ŷt| packets (if
ŷt is positive), or increases by |ŷt| (if ŷt is negative). When
the measurement agent obtains the actual standing queue Yt+1

and spare ratio srt+1 next time, we can calculate the ground
truth yt as Eq. 10. Then we leverage Adam [42] to train the SL
model. Since we can evaluate the effectiveness of the model
in real time and use the collected data for model update, the
training is in place.

yt =

 ŷt + Yt+1 if Yt+1 > 0
ŷt − linkCapacityt+1 ∗ srt+1 if Yt+1 = 0, sr > 0

ŷt, if Yt+1 = 0, sr = 0
(10)

D. Feasibility

Both the measurement agent and action agent of ABS
can be easily implemented on today’s programmable switches
(e.g., barefoot’s tofino) using languages such as P4. The com-
munication between the ML agent and measurement/action
agent can be realized by protocols such as OpenFlow or P4
runtime. The data transmitted from the measurement agent to
the ML agent is the network state features. As we mentioned
in section III-B, the state features used in ML models include
(qDelay, inPackets, throughput, pDelay, capacity), the
total size of which is 40 bytes (i.e., 8 bytes each). Among
them, qDelay, inPackets, throughput and capacity of the
egress link are directly available in the view of the switch.
As for pDelay, it can be calculated as RTT − qDelay. Here,
we leverage the TCP timestamp mechanism used in Linux,
which is opened by default, to obtain the RTT of end-hosts
at the switch. The timestamp when the data packet is sent
is stored in the option field of TCP header. RTT can be
calculated by the difference between two timestamps from the
sequential packets with an ACK packet between them. In order
to mitigate the computation overhead of RTT at the switch,
we periodically sample the packets in flows and extract the
timestamps for RTT calculation. Additionally, the average of
RTT from all flows is used to obtain the value of pDelay.

For the ML agent, the training phase is efficiency-tolerable
which can be deployed on a high-performance server. As
for ABSRL, the training module need to be implemented
under the simulation environment. The pattern of the practical
environment can be stable for relatively long time, and the
model will be retrained based on the pattern at a regular basis.
To avoid the sudden failure of our trained model caused by
accidental change of environment, we periodically disable our
RL model and set the buffer size to be the value calculated
by Bandwidth-Delay-Product (BDP). Then the performance
of ABS and BDP-based buffer sizing will be compared. If the
performance of ABS is poor, the model will be retrained. For
ABSSL, the training process is much simpler. Since its ground
truth can be obtained in real time, we do not need a simulation
environment and we can use the data collected recently from



the real environment for training. Moreover, we can calculate
the deviation between ground truth and the predicted value,
and then check if the SL model fails. In case of failure, the
model will be retrained.

As for the inference module of ML agent, one design is
to deploy on each single node, that is each high-performance
switch. We test it on a low-performance server whose CPU
is Intel Xeon with a single core. The time for each inference
of ABS is less than 2ms which is negligible compared with
the time interval between two modification operations to the
buffer size. The CPU utilization is less than 0.5% and the
memory size of the trained model is smaller than 124 MB.
Another type of deployment is to resort to the architecture of
SDN. In this case, the ML inference module is deployed in
the controller and the value of buffer size is transmitted to the
switch periodically. The size of one state transmitted from the
switch to the controller is 40 bytes. The data transmitted from
the controller to the switch include the buffer size and the time
interval, which is 12 bytes in total. If the time interval between
two rounds of communication is set as 0.1s, the bandwidth
consumption of communication between the controller and a
switch is only 4.16 Kbps.

IV. EVALUATION

A. Experiment Setting

We design a simulation platform for evaluating the perfor-
mance of ABS. The platform consists of the NS-2 simulator,
the ML module, and the interfaces for their interactions (as
Fig. 1). NS-2 is well known as an event driven simulator.
Therefore, it maintains its own timeline during its simulation.
There is huge time drifting compared to the timeline in the
ML module, resulting in severe synchronization issues. To this
end, we modify the queue management module (e.g., Drop-
tail) in NS-2, and add timers to trigger the feature transmission
operation when the ML module exactly requires, ending with
time synchronization between NS-2 and the ML module by
force. Then, we provide interfaces in queue management mod-
ule of NS-2 for both fetching features to the ML module and
deploying actions obtained from the ML module. As a result,
our aforementioned modifications make NS-2 compatible with
ML module in SDN controllers.

Our testbed topology is a dumbbell topology consisting of
several pairs of senders and receivers, and two programmable
switches on the link deployed with our modified Drop-tail
module. To test the impact of buffer size on different RTTs
and bottleneck link capacity, we design two experimental
environments:

Env 1: The bottleneck link capacity is relatively stable while
the RTTs of the connections are diverse. The detailed topology
consists of 100 senders and 100 receivers. In order to produce
the congestion link, the bandwidth of the links between end-
hosts (i.e., both senders and receivers) and switches is 10Gbps,
whereas the one between two switches is only 1Gbps. To pro-
vide RTT variance, the latency between senders and switches
is classified into ten groups according to its value, with the
latency varies from 0.1 ms to 7.8 ms. Moreover, the latency
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Fig. 4: The capacity of wireless network. The left one is
denoted as capacity trace 1 and the right one is trace 2.

between receivers and switches is completely symmetry to the
one between senders and switches.

In order to test the performance of ABS thoroughly, we
conduct the experiments with three different distributions
using representative parameters to mimic the realistic network
environments. First, the arrival of flows (i.e., the beginning
time of flows) obeys the Poisson distribution with the average
arrival ratio λ = 0.02. Next, the transmission duration of flows
follows exponential distribution with average transmission
duration k = 5. Third, the senders and receivers are randomly
picked up with normal distribution with the expectation of
location µ. Here, µ increases by 5 every one second and it
decreases by 5 every one second when it grows to 100. After
dropping to 0, µ repeats increasing with the same step of 5
every one second. Therefore, the RTTs of flows could vary
from each other once their arrival time is different. The whole
simulation lasts for 300 seconds. We split the simulation into
two parts. The data provided in the first 200 seconds are used
for training and those in the last 100 seconds are regarded as
the test set.

Env 2: This environment is setup to mimic the wireless
communication. Different from Env 1, RTTs between all
the senders and receivers are identical (i.e., 100 ms). Since
wireless has smaller bandwidth than the previous environment,
we change the bandwidth of the links between end-hosts and
switches to around 160Mbps. Due to the reduced capacity of
the bottleneck link, the experiments are conducted with only
2 senders and 2 receivers. The variation of the bottleneck
link’s capacity follows the trace captured from the real wireless
communication [43], in which the capacity is quickly changing
as shown in Fig. 4. All the flows arrive simultaneously and
they last till the end of the simulation in this environment.
Other network parameters are the same as Env 1.

For the parameters of the QoE function, we empirically
summarize the latency of the data center and wireless network
and design two QoEdelay for Env 1 and Env 2, respectively.

B. Simulation Evaluation

1) Baselines: Fixed Buffer Sizing: The buffer size is set
as two fixed values in different orders of magnitude, namely
10 packets and 100 packets2.

BDP-based scheme: The buffer size is adaptively set as the
recommendation proposed by [5] without any ML framework

2In this paper, the buffer size in packets means how many MTU-sized
packets the buffer can accommodate.



involved, which is the product of bandwidth and RTT divided
by the square root of the number of flows. Since queueing
delay is related to buffer size, only propagation delay is
regarded as the RTT. We use the RTT and bandwidth collected
in the current time interval to calculate and set the buffer size
in the next time interval.

Cocoa: Cocoa is a heuristic method to change the buffer
size based on the standing queue and spare ratio in the past
with no prediction.

Besides the buffer sizing schemes above, we also compare
the performance of our proposed ABS framework with two
classic congestion control methods.

RED: RED is an AQM method for congestion avoidance.
Compared with Drop-tail, it drops packets before the buffer
becomes completely full.

CoDel: CoDel controls the network congestion by dropping
packets based on the minimum queueing delay.

2) Flows with different RTTs (Env 1): As for ABSRL and
ABSSL, the size of the buffer is updated every 1 second
according to the result of the ML module. Here we use
1 second because the environment is relatively stable. We
also tried other experiments with time interval set as 0.1
second, and obtained similar results. The adjusting frequency
in BDP-based scheme is the same as ABSRL and ABSSL.
The parameters of the QoE function are set as follows:

QoEdelay1 =


−5.0× 104 ∗ x+ 100.0 if x ≤ 10−4

−8.5× 105 ∗ x+ 180.0 if 10−4 < x ≤ 2× 10−4

22.0 ∗ e−3988.6∗x + 0.1 if x > 2× 10−4

(11)
We set the importance weights of throughput and delay as
α = 1 and β = 1. Then, we get the QoE function QoE1.

Performance Comparison We conduct the experiments
when TCP New Reno, TCP Cubic and mixed congestion
control algorithms (60% New Reno, 30% Cubic, 10% BBR)
are used as the transmission protocol between all senders
and receivers. The performance of ABS and the baselines are
shown in Table I where THP means throughput. Generally, the
average QoE of ABS significantly outperforms the baselines
by up to 38.23x. An interesting observation is that the average
buffer size recommended by ABSRL is 22.25 when using New
Reno, while the value is 11.31 when using Cubic. However,
the average throughput of Cubic is larger than that of New
Reno, which shows that the requirement of buffer size when
using Cubic is smaller than that when using New Reno under
the same traffic pattern. ABS framework can achieve better
performance whatever congestion control algorithm is used.
The average QoE of ABSRL is 24.1% better than fixed
buffer sizing schemes. ABSSL does not perform best in this
scenario because its optimization goal pays more attention to
the utilization of the link bandwidth, while the QoE function
has more stringent requirements on queueing delay. However,
it still outperforms both CoDel and buffers with inappropriate
fixed size. CoDel performs well on throughput, but it suffers
greater delay because of the setting of fixed queueing delay
target. As for cocoa, due to its design does not consider
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Fig. 5: The average reward of ABSRL (a) and the loss of
ABSSL (b) during the training epochs in Env 1.

multiple flows, the queueing delay is extremely unstable.
Then we take TCP New Reno as example and dive into the

results. The average reward of ABSRL and the loss of ABSSL
during the training epochs are shown in Fig. 5. We can find that
ABSRL gradually converges after 200 epochs, while ABSSL
converges much more quickly. As shown in Fig. 6, we compare
the throughput and delay in every second with other baselines.
The left part of the black vertical line (i.e., simulation time
≤ 200) is used for training, and the right part is the test
set. According to our experiment result, the performance on
training set and test set is similar. Compared with the fixed
buffer sizing schemes, ABSRL can flexibly adjust the buffer
with the change of RTT to achieve relatively stable throughput.
As for the BDP-based scheme, since the queueing delay in
the next time interval cannot be foreseen, it underestimates
the RTT and the buffer size is relatively small, resulting in
underutilization of bandwidth. Therefore, the performance is
relatively poor. Additionally, we show the change of buffer size
during the simulation in Fig. 7(a). Both ABSRL and ABSSL
are able to automatically adjust the buffer size according to the
network condition. The buffer size grows as RTT increases,
while buffer size reduces when RTT decreases. In all the cases,
ABSRL can make a best trade-off between throughput and
delay which meets the requirements of the QoE, and ABSSL
has acceptable performance in general scenarios.
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Fig. 6: Comparison of throughput and delay in Env 1. (We
do not show the queueing delay of cocoa and CoDel in this
figure due to its extremely large value.)



TABLE I: Performance of ABS and baselines in Env 1.
TCP New Reno TCP Cubic Mixed CC

Method
Avg
THP

(Mbps)

Avg
Delay
(ms)

95th %ile
Delay
(ms)

Avg
QoE1

Avg
THP

(Mbps)

Avg
Delay
(ms)

95th %ile
Delay
(ms)

Avg
QoE1

Avg
THP

(Mbps)

Avg
Delay
(ms)

95th %ile
Delay
(ms)

Avg
QoE1

Fix(10) 685.31 0.033 0.073 65.62 893.46 0.052 0.010 84.68 825.83 0.0434 0.1013 78.40
Fix(100) 968.38 0.712 0.985 2.13 994.64 0.948 1.11 1.05 974.27 0.7903 1.0858 4.566

BDP 177.16 0.0025 0.0028 17.28 358.28 0.0023 0.0034 34.94 973.74 9.202 26.525 2.792
cocoa 932.51 22.03 104.3 11.85 944.31 2.30 4.17 35.77 901.40 24.62 123.70 24.74
RED 774.69 0.057 0.121 71.26 943.35 0.085 0.115 78.35 878.50 0.0686 0.1436 75.04

CoDel 994.96 6.95 10.58 0.09 997.31 7.46 112 0.090 992.89 6.852 9.910 0.0896
ABSSL 956.21 0.388 0.938 17.23 976.75 14.3 0.248 55.20 705.24 0.0400 0.1505 61.91
ABSRL 877.43 0.075 0.107 81.44 903.89 0.050 0.033 85.18 856.54 0.0638 0.1133 80.11

TABLE II: Performance of ABS and baselines in Env 2.
TCP New Reno TCP Cubic Mixed CC

Method
Avg
THP

(Mbps)

Avg
Delay
(ms)

95th %ile
Delay
(ms)

Avg
QoE2

Avg
THP

(Mbps)

Avg
Delay
(ms)

95th %ile
Delay
(ms)

Avg
QoE2

Avg
THP

(Mbps)

Avg
Delay
(ms)

95th %ile
Delay
(ms)

Avg
QoE2

Fix(10) 1.84 32.6 82.8 51.05 2.28 33.5 90.2 55.11 1.94 32.36 84.02 41.10
Fix(100) 5.73 185.2 512.2 49.78 6.73 230.8 632.0 46.12 6.62 210.47 604.42 39.60

BDP 2.17 30.13 69.49 49.88 3.20 34.2 85.7 51.01 2.31 34.76 94.13 40.52
cocoa 8.06 2264.4 7503.4 15.40 8.06 6495 18151 12.15 4.63 2578.01 8122.34 4.233
RED 2.30 37.39 101.6 54.88 2.81 41.9 113.6 59.11 2.44 39.51 108.12 44.47

CoDel 4.40 38.75 110.3 64.62 4.87 40.6 120.6 66.66 4.63 38.24 116.07 47.03
ABSSL 6.10 61.17 173.4 65.31 6.42 44.7 97.3 70.29 6.27 58.46 154.01 47.14
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Fig. 7: The change of buffer size. (a) shows the buffer size in
Env 1. (b) shows the buffer size with a new traffic pattern.

Effect of different QoE functions We conduct experiments
to test the effect of different QoE functions. We change the
parameters in QoE1 into α = 2, β = 1 and α = 1, β = 2.
We also test new QoEdelay2, in which the parameters are set
as follows: a1 = −1.67, b1 = 100.0, a2 = −2.83 × 105, b2 =
180.0, a3 = 18.0, b3 = −999.1, c3 = 0.1, t1 = 3× 10−4, t2 =
6 × 10−4. t1 and t2 in QoEdelay2 are larger than those in
QoEdelay1, which means that QoEdelay2 has more relaxed
requirements on delay. The results are shown in Table III.
Since the QoE functions serve as the reward function in the
training process of ABSRL, it can cater to different network
requirements of applications and achieve better performance
than other baselines. However, ABSSL cannot adapt to specific
requirements. The performance of ABSSL is better when the
QoE function pays more attention to throughput or has less
strict requirements on queueing delay. So, when α, t1 and t2

TABLE III: The effect of different QoE functions in Env 1.

Method
α = 2
β = 1

α = 1
β = 2

QoE
(QoEdelay2)

Fix(10) 49.26 64.36 66.49
Fix(100) 1.88 0.18 21.30
BDP 4.41 17.26 17.29
Cocoa 11.25 10.28 23.21
RED 57.56 67.61 74.83
CoDel 8.73e-02 8.31e-05 0.19
ABSSL 15.94 10.90 64.11
ABSRL 69.29 77.16 85.09

is much larger, the QoE performance of ABSSL can be better.
Generalization Since the network is dynamic, the pattern

of traffic may change. To test the generalization of the trained
model, we change the pattern of the traffic with average
flow arrival ratio λ = 0.04 and average flow transmission
duration k = 10. Then we use the model trained in the
previous scenario (i.e., the model trained with λ = 0.02 and
k = 5) to decide the buffer size. The buffer size can still been
automatically adjusted as shown in Fig. 7(b). The performance
of ABSRL and ABSSL are still acceptable (Avg QoE1 of
ABSRL=76.00, Avg QoE1 of ABSSL=18.35) in case of the
different traffic patterns.

3) Links with dynamic capacity (Env 2): Similar to the
experiment above, we conduct experiments to study whether
ABS can adapt to the network with dynamic capacity. In this
environment, we set the parameters of QoEdelay as follows:



a1 = −62.5, b1 = 100.0, a2 = −1214.3, b2 = 192.1, a3 =
27.4, b3 = −6.8, c3 = 0.07, t1 = 0.08, t2 = 0.15. α and β
are set as 1. The QoE function is denoted as QoE2. We take
capacity trace 1 in Fig. 4 as example. The first 500 seconds
is used as the training set and the remaining trace is regarded
as the test set. Since the trace is changing almost all the time,
the configuration time interval is set as 0.1 second.

Performance Comparison We examine the performance
of ABS in Env2 when TCP New Reno, TCP Cubic and
mixed congestion control algorithms (one flow uses New Reno
and the other flow uses Cubic) are used by the senders. By
conducting several times of experiments, we find that ABSRL
can hardly converge when the capacity is highly dynamic
and much noisy is introduced into the reward, while ABSSL
is much more robust in such complicate environment. The
results shown in Table II demonstrate the effectiveness and
efficiency of ABSSL. ABSSL outperforms all the baselines
and its performance using Cubic is much better than it using
New Reno because of the improvement of throughput, while
the performance of CoDel is similar. So ABSSL performs
better than CoDel when using Cubic.

For better illustration, we take TCP New Reno as example
and plot the cumulative bytes transferred and queueing delay
of different schemes in Fig. 8. The cumulative bytes trans-
ferred can be seen as the performance of average throughput.
The left part of the black vertical line in the figure is the
training phase, and the right part is the test phase. ABSSL
can achieve better balance between throughput and delay by
flexibly changing the buffer size (as shown in Fig. 9(a)),
outperforming fixed buffer sizing schemes. On one hand, when
the fixed buffer size is small, the throughput is small (namely,
the link capacity cannot not fully utilized). On the other hand,
the large fixed buffer size results in excess queueing delay.
BDP-based scheme suffers from the low throughput due to
the smaller buffer size, because this scheme is not able to
acquire the queueing delay in the future and it calculates its
buffer size by only considering the current propagation delay.
Cocoa has a good performance on throughput, but the delay of
it is intolerable and may cause timeout. Compared with buffer
sizing schemes, CoDel performs much better. However, the
strict limitation on the queueing delay results in a relatively
poor performance on throughput.

Generalization Since users may move to areas covered
by different wireless networks, we examine the effectiveness
of the model trained in the environment with capacity trace
1 in Fig. 4 when it is used in a new environment with
capacity trace 2. ABSSL can still adjust the buffer size based
on the new capacity trace (shown in Fig. 9(b)) and the
performance of ABSSL keeps stable (Avg QoE2 = 70.96)
which demonstrates the generalization and robustness of the
trained model of ABSSL. Moreover, ABSSL can be trained in
place and the failure of ABSSL model can be quickly found
and updated to adapt to a completely new environment.

In conclusion, we test our proposed ABS framework in
two environments. The overall performance of ABS shown in
Table I and II demonstrates that ABS outperforms other buffer
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Fig. 8: Comparison of throughput and delay in Env 2.
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Fig. 9: The change of buffer size. (a) shows the buffer size in
Env 2. (b) shows the buffer size of capacity trace 2 (model
trained with capacity trace 1).

sizing schemes when RTT or link capacity is dynamic. We also
compare it with other classic congestion control algorithms
which do not base on buffer size. CoDel performs well in
the environment with stable RTTs, however, the performance
is relatively poor when RTTs of flows are highly dynamic.
RED has too much parameters which are hard to configure
in different environments. So, ABS framework is much more
efficient and easily-configured in dynamic environments.

V. CONCLUSION

In this paper, we propose a novel programmable buffer siz-
ing framework, ABS, to meet the user requirement in dynamic
network traffic. Two specific ML models, namely ABSRL and
ABSSL, are addressed as typical use cases of programmability
for different dynamic network environments. The experiments
on the reconstructed dedicated simulation platform show that
our ABS remarkably improve the performance by up to 38.23x
on QoE functions compared with the state-of-the-art buffer
sizing solutions.
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